Adaptable measurement and control system for mixed signal testing
imc CRONOScompact at a glance

- Portable and rack-mounted enclosure options
- Modular reconfigurable hardware, adaptable to changing testing requirements
- Extensive control capabilities with multiple levels of open and closed loop and simulation
- Simultaneous recording of analog, digital and field/vehicle-bus data
- Up to 400 kS/s per system and 100 kS/s per channel
- Supports virtually any physical sensor
- Sophisticated and intuitive triggering system
- Versatile storage options including onboard removable flash media
- Networkable with other imc systems for synchronous acquisition of thousands of channels
- Onboard real-time data analysis and reduction
- Stand-alone, remote or interactive operation
The imc CRONOS compact is the single most comprehensive data acquisition system for electromechanical testing on the market today. Integrating measurement, control and real-time simulation into one housing provides you with the reliability of absolute synchronization, and the convenience of having all of your tools in one place.

Whether you are measuring highly dynamic signals up to the audio range, using multiple PID control loops for test stand automation, or monitoring process signals and fieldbus data throughout an entire test cell, imc CRONOS compact is your universal system. From high voltage to current fed, and from strain gauges to thermocouples, the integrated signal conditioning of imc CRONOS compact also ensures compatibility of every sensor you may need.

Incorporating the complete range of modular I/O choices and integrated signal conditioning of the imc CRONOS platform, imc CRONOS compact provides the versatility and broad range of capabilities that allow you to achieve the highest levels of productivity in your testing.

With wired and wireless networking options, and remote connectivity through imc LINK, you can stay on top of your data no matter where it is being collected. When unattended operation is more appropriate for your testing situation, imc CRONOS compact is also able to operate in a stand-alone mode, automatically starting the data acquisition, control and simulation upon power-up.

All this capability is available in modular and reconfigurable portable housings or 19" rack systems. Thus, imc CRONOS compact is suitable for in-vehicle and field testing and perfectly tailored for test stand applications.

imc CRONOS compact: the compact solution for all of your professional testing requirements.
Productive testing with imc CRONOScompact

Keeping up with your changing tasks
- Reconfigurable hardware design with a wide selection of plug-in amplifier/conditioner modules
- Software based configurations are easily stored, loaded, and modified to meet test demands
- Expandable via plug-in modules or distributed synchronous CAN I/O modules
- Support all electromechanical sensors in multi-channel, mixed-signal measurements
- Easily switch between interactive, remote, or standalone operation as test requires

Use your time effectively
- Comprehensive test stand data acquisition & real-time control in one integrated unit
- Real-time data processing while the test is running so results are immediately available
- Intuitive trigger system selectively stores the important data for easier post-processing
- Fast reconfiguration with exchangeable modules and/or variable setups
- Customized solutions from imc to simplify 3rd party integration

Saving your money
- Universal amplifiers incorporate signal conditioning for most sensors types, from static to highly dynamic measurements
- Synchronous recording of analog, digital and industrial field/vehicle bus in one system
- imc’s unique breakout connectors provide quick connections for any existing sensor
- Supports automatic sensor recognition, and add-on TEDS from imc

Gaining your independence
- Measurement, real-time control and simulation in one unit
- Portable design goes from field to test bench as your test requires
- Stand-alone operation with the flip of a software switch when the PC cannot be used
- Li-Ion battery option for long-term operation independent from the power grid
- Includes power-up self-start capability and internal storage

Securing your investment
- Robust power supply with backup power for uninterrupted operation
- Reliable operation assures data integrity
- Redundant data storage to local drive in parallel with network storage
In Practice

Incorporating simulated components in conventional testing
Given the short product development cycles now demanded by the market, test engineers are being called on to provide test data in early stages of the development process – often before the entire system is actually available. Using an imc CRONOScompact system equipped with the imc HiL option, you can quickly incorporate the Simulink models that the developers have already created directly into your test stand. Combining both virtual and real signals, tests can thus be performed on-time, following established standards and without changing existing test procedures.

Combine analog, CAN, FlexRay, LIN, ...
Vehicle testing has grown increasingly complex, thanks in part to almost limitless information now available via onboard ECUs. “Unfortunately, when we were conducting proof-of-concept testing, we ran into a problem of incompatible vehicle busses and protocols – some CAN, some LIN, some FlexRay even.” However, since imc CRONOScompact systems may be ordered with multiple synchronized vehicle data bus interfaces, your testing doesn’t have to slow down. You can bring all of the different subsystem data, including physical sensor signals installed on the vehicle, together into one central location.

Flexibility for test stand applications
Test stand environments require flexibility of both hardware and software. On the R&D end of the product development cycle, the typical “lifetime” of any particular test is only a few days. The fact that you can easily reconfigure your imc CRONOScompact with different plug-in modules means that your hardware is ready for even unusual sensors that requirements sometimes demand. On the software side, imc STUDIO also gives you flexibility and versatility. Clearly structured and straight-forward, it provides the software interface to efficiently setup and run every imc CRONOScompact. Whether you use standard functions or advanced scripts, the combination of imc STUDIO and imc CRONOScompact will offer you the flexibility you need for any test stand application.
Comprehensive capabilities at the core of your automated testing

1. Application I/O: Simulink, synthesizer, PID controller, CAN and other fieldbuses, and custom interfaces
2. Base module: LAN/WLAN, data storage, etc.
3. Modular I/O: analog and digital signal connection, including integrated signal conditioning
4. Rack power and sync, including user status LEDs

Voltage & high voltage, Current, Temperature, Strain gauge, Frequency, speed/angle, Digital input/output, IEPE/ICP acceleration, Analog output
Design Concept

imc CRONOScompact architecture

The base unit and associated chassis are the core of the imc CRONOScompact system:

- TCP/IP Ethernet interface for system configuration and interactive data collection
- Onboard flash storage and optional hard drive data storage
- Real-time signal processing and test control with imc Online FAMOS
- GPS (for time and/or position information) and external display connectivity
- Stand-alone startup and power-failure control logic, including several battery options

Build time options

imc CRONOScompact is capable of an aggregate data collection rate of up to 400 kSample/s per system. The base unit may be configured with a variety of specialized options, including CAN or other fieldbus interface extensions, synthesizer analog output and PID controller modules, as well as the imc HiL Simulink interface (embedded target processor). These options are detailed in the imc CRONOScompact table.

imc CRONOScompact plug-in modules

With up to 100kSamples/s per channel and having integrated signal conditioning and sensor power supplies, plug-in modules are up to the toughest data acquisition challenges. Fully synchronized with anywhere from a handful to hundreds of channels, imc CRONOScompact plug-in modules are compatible with every physical sensor and signal type, and integrate not only sensor signal conditioning, but also filtering and digitizing in one compact, field swap-pable unit. Refer to the table on the next page for more details of the modules available.

Real-time functionality at your fingertips

One of the core concepts of all members of the imc CRONOS family is integrated synchronous control: an extensive array of real-time functionality.

The imc CRONOScompact is well-suited to interact with the test environment, including discrete digital input and outputs, as well as analog outputs (e.g., proportional control) and CAN I/O.

Control signals and simple logic are often handled without the need for any programming, directly through imc’s powerful trigger engine.

For advanced real-time analysis and control, imc Online FAMOS provides the capability of handling tasks ranging from basic statistical operations, such as min./max., average and RMS, to more demanding calculations, such as FFT spectral analysis, signal classification (fatigue analysis) and order tracking. Virtual channels are computed on the fly, in real-time.

In addition, imc Online FAMOS extends the capability of your system to easily create PLC-like control logic with minimal specialized knowledge.

Incorporating responsive real-time and closed loop control (incl. PID), the system can thus handle complete test stand automation.
One software for the entire testing process

imc STUDIO – the modular software for measurement, control and automation

Whether you want to use your imc CRONOScompact in a „black box“ configuration for easy data acquisition, or you want to set up Live-Monitoring on hundreds of channels during prototype testing, or you want to create a complete test stand automation routine with its own control panel – with imc STUDIO, you have full control over the entire measurement process.

Configuration & measurement

imc STUDIO Setup
- Simple measurement device selection
- Clear configuration of all hardware settings
- Intelligent trigger machine
- Flexible, real-time calculations
- Structured project management

Visualization & displays

imc STUDIO Panel (Standard)
- Versatile imc Curve Window configurations (2D/3D)
- Display live video
- Freely customize control & display elements per drag & drop
- Create reports
- Data browser for navigating through large volumes of data

Testing sequences

imc STUDIO Sequencer
- Automation of test and evaluation procedures
- Configuration per Drag & Drop
- From sequence control to automated data evaluation and report creation
- imc FAMOS & MATLAB interface

User interface

imc STUDIO Panel (Professional)
- Intelligent instruments (Widgets) and control elements
- Individually customizable GUIs
- Additional application-oriented components for user interfaces
- Full-screen display
- User rights management

Test stand automation

imc STUDIO Automation
- Real-time automation platform
- Graphical design environment for test stands and test setups per Drag & Drop or notation
- imc hardware provides the necessary deterministic timing
- Threshold monitoring in the background

Efficient system integration

- Integration of DLLs
- Scripting engine (.Net)
- Integrated workbench
- Connection to 3rd-party devices
- Implement your own data-stream analysis
- LabVIEW interface (VI’s)
- DIAdem interface

www.imc-tm.com/cronoscompact
Remote Testing
imc LINK / imc WEBDEVICES
• Remote connection for imc measurement systems via WiFi or mobile radio
• Automatic measurement data transfer to the PC or server
• Automated evaluations
• GPS data on map background
• Turnkey solutions including IT & service

Live data analysis
imc Online FAMOS / imc Inline FAMOS
• Analyze and calculate live data streams
• “Immediate results” during the running measurement
• Autarkic in the device (imc Online FAMOS)
• PC-based with scalable performance (imc Inline FAMOS)
• Simple syntax

Video integration
imc STUDIO Video
• Time-synchronized video and measurement data acquisition
• Pre-trigger function
• Up to 4 simultaneous video cameras
• 2 redundant channels per camera with independent sampling and trigger settings (monitor channels)

Analysis & documentation
imc FAMOS
• Powerful data analysis and documentation
• Full range of pre-defined calculation functions
• Create multi-layer macros
• Create user-defined GUls
• Control large amounts of data

Webserver
imc REMOTE
• Configurable homepage for displaying and operating imc measurement devices
• Platform-independent device access with standard internet browser
• Web Design Wizard for creating individual web pages
• Supports https (SSL) for secure connection

Sensor management
imc SENSORS
• Management of any sensor
• Measurement channel configuration from sensor database per Drag & Drop
• Descriptions from TEDS

Remote Testing
imc LINK / imc WEBDEVICES
• Remote connection for imc measurement systems via WiFi or mobile radio
• Automatic measurement data transfer to the PC or server
• Automated evaluations
• GPS data on map background
• Turnkey solutions including IT & service

imc STUDIO Plug-In
Additional software
imc CRONOScompact Details

imc CRONOScompact mainframe/housing

<table>
<thead>
<tr>
<th>General</th>
<th>CRC-400 & rack variants</th>
<th>CRC-400GP & rack variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing type</td>
<td>portable & 19" rack</td>
<td>portable & 19" rack</td>
</tr>
<tr>
<td>Extension module slots</td>
<td>8/11/13/17</td>
<td>7/10/12/16/17</td>
</tr>
<tr>
<td>Aggregate sampling rate</td>
<td>400 kSps</td>
<td>400 kSps</td>
</tr>
<tr>
<td>ext. imc CRONOSflex modules (CRFX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ext. aggregate sampling rate (incl. CRFX modules)</td>
<td></td>
<td>2000 kSps</td>
</tr>
</tbody>
</table>

Operating conditions

- Standard operating temp. range
- Extended temp. range (incl. condensation)
- Shock vibration rating MIL 810F (40g)

Connectivity

- Ethernet
- 100 MBit
- 1 GBit
- int. WiFi adapter IEEE 802.11.g (54 Mbit/s)
- Dual Band IEEE 902.11.g (300 Mbit/s)
- Wireless UMTS, 3G, 4G
- GPS connection port
- Display connection port
- Remote controlled main switch
- Programmable status feedback (LEDs)

Data storage

- CF card slot (Compact Flash)
- Storage on PC / network drive
- Hard disk (internal)

Stand-alone capabilities

- PC independent complex trigger functionality
- Onboard real-time data analysis (imc Online FAMOS)
- Autarkic PC-less operation, self start

Synchronization & clock

- Master-slave between different imc systems
- NTP network based synchronization
- Via external GPS signal
- Via external IRIG-B & DCF-77 signal

Field bus extensions

- CAN, CAN FD
- LIN
- FlexRay
- MVB
- ARINC
- XCPoE (Master, Slave)
- EtherCAT Slave
- Kistler RoaDyn®

Power supply

- DC input 10V to 50V
- Isolated power supply input
- AC/DC adapter (110 to 230VAC)
- AC input (110 to 230VAC) for AC RACK
- Data integrity upon power fail
- UPS
- UPS (extended range Li-Ion)
imc CRONOS compact analog amplifier modules

Voltage measurement

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Max. sampling rate (per channel)</th>
<th>Signal bandwidth (-3dB)</th>
<th>Min. voltage range (mV)</th>
<th>Voltage mode</th>
<th>Current</th>
<th>Temp</th>
<th>ICP/Supply</th>
<th>Bridge mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV2-16</td>
<td>16</td>
<td>2</td>
<td>DSUB-15</td>
<td></td>
<td>20 kHz</td>
<td>6.6 kHz</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC2-32</td>
<td>32</td>
<td>4</td>
<td>DSUB-15</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage & temperature measurement

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Max. sampling rate (per channel)</th>
<th>Signal bandwidth (-3dB)</th>
<th>Min. voltage range (mV)</th>
<th>Voltage mode</th>
<th>Current</th>
<th>Temp</th>
<th>ICP/Supply</th>
<th>Bridge mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSC-16</td>
<td>16</td>
<td>2</td>
<td>DSUB-15</td>
<td></td>
<td>5 kHz</td>
<td>1 kHz</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC-16-2T</td>
<td>16</td>
<td>2</td>
<td>Thermo</td>
<td></td>
<td>20 kHz</td>
<td>20 Hz</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-8</td>
<td>8</td>
<td>1</td>
<td>DSUB-15</td>
<td></td>
<td>100 kHz</td>
<td>11 kHz</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8-2T</td>
<td>8</td>
<td>1</td>
<td>Thermo</td>
<td></td>
<td>100 kHz</td>
<td>11 kHz</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO2-8</td>
<td>8</td>
<td>1</td>
<td>DSUB-15</td>
<td></td>
<td>100 kHz</td>
<td>11 kHz</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO2-8-2T</td>
<td>8</td>
<td>1</td>
<td>Lemo.1B</td>
<td></td>
<td>100 kHz</td>
<td>11 kHz</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High voltage measurement 600V CAT III

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Max. sampling rate (per channel)</th>
<th>Signal bandwidth (-3dB)</th>
<th>Min. voltage range (mV)</th>
<th>Voltage mode</th>
<th>Current</th>
<th>Temp</th>
<th>ICP/Supply</th>
<th>Bridge mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV2-4U(U-chan)</td>
<td>4</td>
<td>2</td>
<td>Banana</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>2,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HV2-2U2I(U-chan)</td>
<td>4</td>
<td>2</td>
<td>Lemo.1B</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>2,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Audio & vibration measurements

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Max. sampling rate (per channel)</th>
<th>Signal bandwidth (-3dB)</th>
<th>Min. voltage range (mV)</th>
<th>Voltage mode</th>
<th>Current</th>
<th>Temp</th>
<th>ICP/Supply</th>
<th>Bridge mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPCU2-8</td>
<td>8</td>
<td>2</td>
<td>BNC</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPCU-16</td>
<td>16</td>
<td>4</td>
<td>BNC</td>
<td></td>
<td>20 kHz</td>
<td>20 Hz</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUDIO-4</td>
<td>4</td>
<td>2</td>
<td>BNC</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUDIO-4-MIC</td>
<td>4</td>
<td>2</td>
<td>BNC, Lemo.1B</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bridge & strain gauge measurements

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Max. sampling rate (per channel)</th>
<th>Signal bandwidth (-3dB)</th>
<th>Min. voltage range (mV)</th>
<th>Voltage mode</th>
<th>Current</th>
<th>Temp</th>
<th>ICP/Supply</th>
<th>Bridge mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR2-4</td>
<td>4</td>
<td>1</td>
<td>DSUB-15</td>
<td></td>
<td>20 kHz</td>
<td>8.6 kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8</td>
<td>8</td>
<td>2</td>
<td>DSUB-15</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC-8</td>
<td>8</td>
<td>2</td>
<td>DSUB-26-HD</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCB2-8</td>
<td>8</td>
<td>2</td>
<td>DSUB-26-HD</td>
<td></td>
<td>100 kHz</td>
<td>5 kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCBC2-8</td>
<td>8</td>
<td>2</td>
<td>Lemo.1B</td>
<td></td>
<td>100 kHz</td>
<td>5 kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For universal use

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Max. sampling rate (per channel)</th>
<th>Signal bandwidth (-3dB)</th>
<th>Min. voltage range (mV)</th>
<th>Voltage mode</th>
<th>Current</th>
<th>Temp</th>
<th>ICP/Supply</th>
<th>Bridge mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI2-8</td>
<td>8</td>
<td>2</td>
<td>DSUB-15</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNI-4</td>
<td>4</td>
<td>1</td>
<td>DSUB-15</td>
<td></td>
<td>100 kHz</td>
<td>48 kHz</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

imc CRONOS compact DIO, pulse counter, DAC modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Input Bits</th>
<th>Voltage mode</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI16-DO8-ENC4</td>
<td>2</td>
<td>DSUB-15</td>
<td>16</td>
<td>8</td>
<td>256 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI8-DO8-ENC4-DAC4</td>
<td>2</td>
<td>DSUB-15</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>32 MHz</td>
<td></td>
</tr>
</tbody>
</table>

Pulse counter modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Input Bits</th>
<th>Output Bits</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>HREN-4</td>
<td>1</td>
<td>DSUB-15</td>
<td>4</td>
<td>4</td>
<td>256 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRO-4</td>
<td>1</td>
<td>DSUB-15</td>
<td>4</td>
<td>4</td>
<td>256 MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Digital I/O modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Input Bits</th>
<th>Output Bits</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI2-16</td>
<td>1</td>
<td>DSUB-15</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO-16</td>
<td>1</td>
<td>DSUB-15</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO-16-HC</td>
<td>1</td>
<td>DSUB-15</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIO-HV4 (250V)</td>
<td>2</td>
<td>Terminals</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analog out modules (DAC)

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Input Bits</th>
<th>Output Bits</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC8</td>
<td>1</td>
<td>DSUB-15</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNTH-8</td>
<td>1</td>
<td>DSUB-15</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Real-time control modules (PID, simulation, custom solutions)

<table>
<thead>
<tr>
<th>Module name</th>
<th>Channels</th>
<th>Slots (1 slot = 4 HP)</th>
<th>Connector</th>
<th>TEDS</th>
<th>Input Bits</th>
<th>Output Bits</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNTH-B</td>
<td>1</td>
<td>DSUB-15</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP-MOD</td>
<td>1</td>
<td>DSUB-15</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIL</td>
<td>2</td>
<td>Hardware-in-the-Loop, MATLAB / Simulink® target processor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEDS support (Transducer Electronic Data Sheet)
imc CRONOS compact modules support direct read/write of TEDS sensors, including imc’s TEDS Clip. TEDS interfaces require either the ACC/DSUB-TEDS-x variants of our connectors (2-wire TEDS), or per-channel connectors such as Lemo... „IEPE“ type TEDS is supported in direct IEPE/ICP input modules.

Digital I/O galvanically isolated, configurable to 24V/5V (TTL/CMOS) Level, output: 0.7A sink, high current: sink and source 0.7A

Pulse Counter
full analog input conditioning
500 kHz analog bandwidth, differential input, analog filter, software adjustable threshold levels
Modes: event counter, event counter, time, frequency, speed, RPM, differential and absolute angle and displacement

Key: ● Default, ○ Optional, (●) Restricted