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Measurement uncertainty of measured value series  

Applications in imc FAMOS  

 
 

 

 

 

Contents  

This document describes how to deal with measurement uncertainty in connection with complete data records, for example, 

time-series or other series of measured values. 

The GUM applies 

Reference is made to the 

GUM, Guide to the expression of uncertainty in measurement 

and therein especially to: 

JCGM 100:2008 

The GUM applies. But it must be sensibly interpreted and applied. 

When measurement uncertainty is mentioned in the following, the standard measurement uncertainty is meant. 

GUM and "the measured value"  

The GUM deals with the measurement uncertainty for the one measured value. Example: The temperature of the oil in the oil 

sump is to be determined. A thermocouple and a measuring device is used for this. The measured value can be read off: 23.8 °C. 

This is the one measured value. The GUM describes how the measurement uncertainty of this measured value is now 

determined. To do this, all influencing factors and sources of error are listed and the measurement uncertainty budget 

determined. The inaccuracy of the thermocouple, the influence of the inaccurate reference point, the gain and the digitisation 

all play a role. In this example, let's assume the measurement uncertainty has been determined to be 0.7 °C. 

 

 

The interval is shown with a grey background in the illustration: 

[Measured value - measurement uncertainty, measured value + measurement uncertainty] 
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It should be noted that the measurement uncertainty represents the standard deviation. With an underlying normal distribution 

of the measured values, the true value lies within the illustrated interval in only about 68 % of all measurements. In addition, the 

following illustration shows the range of the double and triple standard deviation, where the percentage rises to 95 % and 

99.7 % respectively. 

 

 

In the case of the entire interval comprising 6 standard deviations (6 Sigma), it can be said with very high certainty that the 

measured value really lies within this interval. 

Repetition of the measurement to improve the measured value 

The measured value is now read again. This time a value of 24.0 °C is obtained. The GUM describes how multiple measurements 

can reduce the measurement uncertainty. It is described under the heading "Type A evaluation". The measurement uncertainty 

– following the laws of standard deviation – decreases with √𝑁, where N is the number of repetitions.  

𝑢 ̅ =
𝑢

√𝑁
 

In the example, a measurement uncertainty of 0.5 °C is obtained if N=2. The resulting measured value is the arithmetic mean of 

the measured values and is calculated to be 23.9 °C.  

𝑥̅ =  
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

Important here is the fact that the work takes place under the same measurement conditions. What is also important, however, 

is that the true value of the temperature has not changed. 

Carrying out a further determination of the measured value 

Here, too, the measured value is read again. But this time it is assumed that the true value of the temperature may already have 

changed. The intention is therefore not to improve the previous measured value, but to read a completely new measured value 

at this later time. According to GUM, a measurement is performed once again. However, it is a different, new measurement. 

Consequently, the measurement uncertainty budget must be determined for this measurement, too.  

This gives rise to two cases, which are dealt with separately below: the constant and the non-constant measurement uncertainty 

budget. 
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Constant measurement uncertainty budget  

Here, it is assumed that – even during the determination of the measurement uncertainty budget – the measurement 

uncertainty will turn out to be dependent neither directly nor indirectly on the time. According to this assumption the 

measurement uncertainty budget doesn't even need to be determined. 

An example of this is the temperature measurement mentioned above. The measurement uncertainty of the amplifier and the 

thermocouple used does not change. Both are read from the respective data sheet and are thus to be regarded as a constant. 

Measurement over time 

With a constant measurement uncertainty budget, complete data records can now be acquired. The measurement uncertainty 

applies to every single measuring point and thus to all of them. 

 

First measurement at 0.2s, the next at 0.3s. 

The complete data record looks like this: 

 

Here, therefore, the entire measurement (= data record) can be characterised with a single value for the measurement 

uncertainty. 

The measurement uncertainty is shown as a band with a dark grey background. The band has a height of ±0.7 °C everywhere, 

even if it doesn't seem like it at first glance in the steep places. 
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Here, too, the ranges of the double and triple standard deviation are shown with a brighter background: 

 

If the measurement uncertainty is constant, this simplifies the further processing based on the data records. Thus, the 

measuring channel in imc FAMOS is assigned a fixed measurement uncertainty that can then be used conveniently for further 

calculation. 

Non-constant measurement uncertainty budget 

If a different value is obtained for the measurement uncertainty in the new measurement – other than 0.7 °C in the example 

above – then that is the general case of the GUM: the measurement uncertainty budget must be determined for each 

measurement, i.e. for each measured value. A simplified treatment is not possible. Typical examples are: 

 A measured value is read every day. Decisive influencing factors are temperature and air pressure, which can be 

significantly different every day. 

 The measurement uncertainty strongly depends of the size of the measured value itself, e.g. amplitude-proportional. 

Example: force measurement with measurement uncertainty dependent on the measured value 

The example of a force measurement with an amplifier is discussed below. The data sheet for the amplifier provides the 

following information: 

Zero point deviation typically 1 % of the measuring range, maximum 2.5 % 
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Gain uncertainty typically 1.5 % of the measured value, maximum 4 % 

Measuring range 200 N 

The values are interpreted such that the contribution to the measurement uncertainty caused by zero point deviation is 

equivalent to the typical value, i.e. 2 N. In addition, it is assumed that the amplitude-proportional share is also equivalent to the 

typical value, i.e. 3 N at maximum output. The force-dependent measurement uncertainty can be determined using this 

equation: 

Measurement uncertainty ( force ) = 2 N + force * 0.015. 

The curve of the force is shown in the following illustration: 

 

 

In the illustration the interval [measured value - measurement uncertainty, measured value + measurement uncertainty] has a 

grey background. With small forces (around 0 N), a measurement uncertainty of 2 N is obtained. With large forces (around 200 

N), a measurement uncertainty of (2 + 3) N = 5 N is obtained. 

The two envelopes can be generated with the following imc FAMOS commands: 

tol1 = Force + 2 + Force * 0.015 

tol2 = Force - 2 - Force * 0.015 
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It should be noted that the amplifier has intentionally been given poor technical data in order to make the graphics clear. 

Modern amplifiers such as those from the imc CRONOSflex series exhibit values that are far more than 10 times as good. 

Consequences 

If the result of a measurement or an evaluation is to be illustrated, then the measurement uncertainty is always to be stated as 

well. If the measurement uncertainty is a (single) numerical value, it is easy to illustrate, to document and to be recorded and 

interpreted by the observer.  

A measurement uncertainty that cannot be expressed as a numerical value is neither easy to handle nor easy for the observer to 

interpret or estimate. 

Therefore a non-constant measurement uncertainty is frequently converted to a constant one.  

Formation of the maximum value 

For example, a non-constant measurement uncertainty can be converted into a constant one by forming a maximum value. 

In the above example of force measurement, therefore  

[constant measurement uncertainty] = maximum ( measurement uncertainty ( force ) ) = 5 N 

The "worst case" principle is applied here: if in doubt, the greater or worse value is taken. Caution: the consistent application of 

this principle, if necessary through several stages of evaluation, sometimes leads to very high and even unbelievable values! 

The principle of maximum value formation does not exist in the GUM. That was only used in former times in the classic error 

calculation: maximum errors were determined and their propagation calculated. The GUM prefers to make use of more 

reproducible variables such as the standard deviation. In addition, the principle of mutual cancellation is observed. 

 

Comprehensive measurement uncertainty 

An averaging operator is preferable when reducing a complex statement to a numeric value. The maximum value former takes 

into account only the maximum, i.e. a single value. The calculation of the standard deviation of all the values in the data record 

is preferable. This is the comprehensive standard deviation with which the comprehensive measurement uncertainty is defined. 

The equation known from the descriptive statistics 

𝑠 = √
1

𝐺 − 1
[∑ ((𝑛𝑖 − 1)𝑠𝑖

2)

𝑁

𝑖=1

+ ∑ 𝑛𝑖

𝑁

𝑖=1

(𝑥̅𝑖 − 𝑥̅)2] 

where  

s comprehensive standard deviation 

N number of random samples = number of measured values 

ni size of the random sample 

G total number, sum of all ni 

si standard deviation of the random sample = measurement uncertainty of every measured value 

𝑥̅𝑖  mean value of the random sample 

𝑥̅ total mean value of all G values 

is applied by declaring all mean values to be irrelevant: One imagines all measured values adjusted to zero, which is irrelevant 

for the consideration of the measurement uncertainty, i.e. 𝑥̅𝑖  = 0 and 𝑥̅ = 0. The mathematical background is that the subtraction 

of a fixed number (here of the measured value) from a random variable doesn't change its variance or standard deviation. 
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All measured values adjusted to zero, representation of the interval [±measurement uncertainty] 

Since no random sample size is known for the standard deviations si of the individual measured values, all ni are assumed to be 

equal and very large. Hence G = N · ni and, as ni approaches infinity, ni → ∞ , this produces: 

𝑠 = √
1

𝑁
∑ 𝑠𝑖

2

𝑁

𝑖=1

 

The comprehensive standard deviation is represented as the quadratic mean value of all individual standard deviations. 

The comprehensive measurement uncertainty u is thus given by 

𝑢 = √
1

𝑁
∑ 𝑢𝑖

2

𝑁

𝑖=1

 

where ui = measurement uncertainty of the measured value and N = number of measured values 

In the example of force measurement this results in: 

u = 3.4 N 

The statement of the comprehensive measurement uncertainty is this: The data record is considered a random process. The 

comprehensive measurement uncertainty describes all occurring deviations from the respective true value in the form of the 

standard deviation. This applies to any distribution, not just the normal distribution. 

The following statement of the GUM therefore also applies: The measurement uncertainty states that, with an underlying 

normal distribution, the true value lies within the interval [±measurement uncertainty] around the measured value in 68 % of all 

measurements. Very similarly, the comprehensive measurement uncertainty states that, with an underlying normal distribution, 

the true value lies within the interval [±measurement uncertainty] around the respective measured value in 68 % of all 

measured values in the data record. The comprehensive measurement uncertainty is also just a measurement uncertainty that 

happens to characterise the entire data record. 

Of course, this comprehensive value is not correct or not precise for each individual measured value. If one only knows the 

comprehensive measurement uncertainty, one has no knowledge of the individually different measurement uncertainties. Only 

those who have that knowledge can, for example, say the following: at the points with a particularly low individual 

measurement uncertainty, the true measured value lies with virtual certainty within the much broader tolerance band of the 

comprehensive measurement uncertainty. At the points with a particularly high individual measurement uncertainty, the true 

measured value lies with less probability (and probably doesn't lie) within the tolerance band of the comprehensive 

measurement uncertainty, which is then comparatively narrow. 
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Shown here is the detailed illustration of the individual measurement uncertainty of the force curve and the superimposed line 

of the comprehensive measurement uncertainty. It should be noted here that 68 % of the measured values do not lie below the 

3.4 N line. This is because the individual measurement uncertainties (i.e. the densely clustered grey bars) are not normally 

distributed. 

Important: The comprehensive measurement uncertainty may be applied only if a complete data record can be really usefully 

characterised with a numerical value from the application. 

imc FAMOS offers this comprehensive measurement uncertainty as a result of the propagation of the measurement uncertainty 

by a mathematical algorithm. It is up to the user to observe the value. 

Interval formation 

In all cases where the situation is complex, the measurement uncertainty not constant at all and a summary consideration too 

coarse, there is no choice but to subdivide the data record into sections. Each section is then regarded individually. 

Complex example  

An acceleration time curve "acc" is given. 

 

The amplitude spectrum is calculated with the following command: 

AmplitudeSpectrum = AmpSpectrumRMS_1( acc, 500, 2, 0, 1) 
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The measurement uncertainty (0.5 % of the measuring range) of the signal "acc" is known and is 3 m/s2. 

The measurement uncertainty of the amplitude spectrum is determined by imc FAMOS: 

UncertaintySet( acc, "Uncertainty", 3) 

UNCERTAINTY_LOOP 1000 1 

_acc = UncertaintyModify ( acc ) 

AmplitudeSpectrum = AmpSpectrumRMS_1( _acc, 500, 2, 0, 1) 

UncertaintyCalc ( AmplitudeSpectrum ) 

End 

uc = UncertaintyGet( AmplitudeSpectrum, "Uncertainty") 

The result of the calculation is uc = 0.12 m/s². 

The alternative command 

UncertaintyCalc ( AmplitudeSpectrum, 99, 0, "uc") 

provides detailed information about the measurement uncertainty of each individual spectral line, i.e. each individual point of the 

result data record. 
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The detailed curve of the measurement uncertainty over the frequency shows that the measurement uncertainty is nothing like 

constant. The application decides whether the comprehensive measurement uncertainty of 0.12 m/s² may be used. For example, 

if only the largest spectral line is of interest, then a measurement uncertainty of 0.07 m/s² can be safely specified for it. But then 

it would be perfect if the mathematical algorithm were to immediately extract this line and determine the measurement 

uncertainty for precisely this line. 

After all, it's good to know whether there are areas in the result with a conspicuously high measurement uncertainty. A detailed 

analysis of the individual measurement uncertainty is therefore always recommended. In the case of the spectral analysis carried 

out, the measurement uncertainty is high in the actually uninteresting right-hand part of the spectrum. If this part is cut out, the 

comprehensive measurement uncertainty also becomes significantly smaller in the remaining left-hand part. After addition to the 

algorithm of 

AmplitudeSpectrum = cut ( AmplitudeSpectrum, 0, 25 ) 

it follows that uc = 0.08 m/s². This can be now considered extremely representative of the result. 

 

 

Conclusion: Detailed knowledge of the measurement uncertainty of each measurement point is important in order 

to justify summarisation to form a comprehensive measurement uncertainty. 
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Additional information: 
 
imc Meßsysteme GmbH 
Voltastr. 5  
13355 Berlin, Germany  
 
Tel.: +49 (0)30-46 7090-0  
Fax: +49 (0)30-46 31 576  
E-Mail: hotline@imc-berlin.de 
Internet: www.imc-berlin.com 
 
For over 25 years, imc Meßsysteme GmbH has been developing, manufacturing and selling hardware and software 
solutions worldwide in the field of physical measurement technology. Whether in a vehicle, on a test bench or 
monitoring plants and machinery – data acquisition with imc systems is considered productive, user-friendly and 
profitable. So whether needed in research, development, testing or commissioning, imc offers complete turnkey 
solutions, as well as standardized measurement devices and software products.  
 
imc measurement systems work in mechanical and mechatronic applications offering up to 100 kHz per channel with 
most popular sensors for measuring physical quantities, such as pressure, force, speed, vibration, noise, 
temperature, voltage or current. The spectrum of imc measurement products and services ranges from simple data 
recording via integrated real-time calculations, to the integration of models and complete automation of test 
benches.  
 
Founded in 1988 and headquartered in Berlin, imc Meßsysteme GmbH employs around 160 employees who are 
continuously working hard to further develop the product portfolio. Internationally, imc products are distributed and  
sold through our 25 partner companies. If you would like to find out more specific information about imc products or 
services in your particular location, or if you are interested in becoming an imc distributor yourself, please go to our 
website where you will find both a world-wide distributor list and more details about becoming an imc distributor 
yourself: http://www.imc-berlin.com/our-partners/ 
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